
Schülerexperiment

Thema: Entladung eines Kondensators

<u>Aufgabe</u>: Untersuchen Sie den Zusammenhang von Stromstärke und Zeit bei der Entladung eines Kondensators.

Bestimmen Sie aus den Messwerten die Kapazität des Kondensators.

Schaltung:

S ... Schalter zum Laden/Entladen des Kondensators

U₀ ... Ladespannung

C ... Kapazität des Kondensators

R ... Entladewiderstand

I ... Entladestromstärke

Vorbereitung:

1. Legen Sie ein Messtabelle für die Messwerte (Zeit/Stromstärke) für mindestens 10 Wertepaare an.

2. Bauen Sie die Schaltung entsprechend der Schaltskizze auf. (Achten Sie auf die Polarität des Kondensators und der Messgeräte!)

 \rightarrow Lehrerkontrolle

3. Erfragen Sie die Werte U_0 , R und Δt beim Lehrer.

Durchführung:

1. Laden Sie den Kondensator bei geschlossenem Schalter auf und bestimmen Sie die Stromstärke I₀.

2. Öffnen Sie bei einem Ton der Zentraluhr den Schalter und bestimmen Sie die Stromstärken I=f(t) nach den Zeitintervallen Δt.

Auswertung:

1. Stellen Sie den Zusammenhang I=f(t) <u>auf Millimeterpapier</u> grafisch dar.

2. Interpretieren Sie den Zusammenhang der gemessenen Größen.

3. Ermitteln Sie aus der Fläche unter dem Graphen die im gesamten Zeitintervall der Messung abgegebene Ladung Q des Kondensators.

4. Berechnen Sie aus der Ladung Q und der Spannung U₀ die Kapazität C dieses Kondensators.

5. Erfragen Sie die angegebene Kapazität des verwendeten Kondensators und führen Sie eine Fehlerbetrachtung durch. Berechnen Sie den absoluten und relativen Fehler der Kapazität.

*Zusatz:

1. Bestimmen Sie durch Regression die Gleichung der Entladestromstärke I=f(t).

2. Ermitteln Sie durch grafische Analyse die transportierte Ladung und die Kapazität des Kondensators.

3. Berechnen Sie aus einem Wertepaar und der Zeitkonstanten den Wert für C.