
Die Natur des Lichtes

Interferenz Fotoeffekt

Modellbeschreibung des Lichtes:

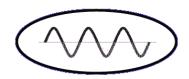
	Wellenmodell	Teilchenmodell	
Grundaussage	Licht ist eine elektro- magnetische Welle	Licht besteht aus Teilchen, den Photonen	
Ausbreitung	Lichtwellen breiten sich räumlich als Kugelwellen aus	jedes Lichtteilchen bewegt sich auf bestimmten geradlinigen Bahnen	
Abhängigkeit der Energie	Energie wird durch die Amplitude bestimmt	Energie wird durch Masse und Geschwindigkeit bestimmt	
Energie- übertragung	Übertragung durch erzwungene Schwingungen	Übertragung durch Stoßprozesse	

Erklärbarkeit optischer Erscheinungen

Welle	Erscheinung	Teilchen
	Ausbreitung mit c=300000km/s	
	Beugung und Interferenz	
	Energie der Fotoelektronen ist unabhängig von der Intensität des Lichtes	
	Erhöhung der Lichtintensität erzeugt mehr Fotoelektronen	
	Energie des Lichtes steigt mit der Frequenz	
	Es existiert eine Grenzfrequenz	

Was ist nun eigentlich Licht?

Licht besitzt eine Doppelnatur, es ist Welle und Teilchen zugleich.


... Licht ist eine elektromagnetische Welle mit Teilchencharakter

oder: ... Licht besteht aus Teilchen mit Wellencharakter

▶ Welle – Teilchen - Dualismus

Mikroobjekte, die sowohl Wellen- als auch Teilcheneigenschaften besitzen nennt man Quanten.

Quantenphysik

Modell eines Quants

Quanten besitzen sowohl typische Eigenschaften von Wellen wie auch Eigenschaften von Teilchen.

Photonen sind (spezielle) Quanten, die sich mit Lichtgeschwindigkeit bewegen.

► Licht muss typische Eigenschaften von Wellen und Teilchen besitzen!

Welle <u>Teilchen</u>

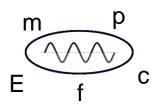
Ausbreitungsgeschwindigkeit: c

Wellenlänge:
$$\lambda$$
 Masse: m

Frequenz: f Impuls: p

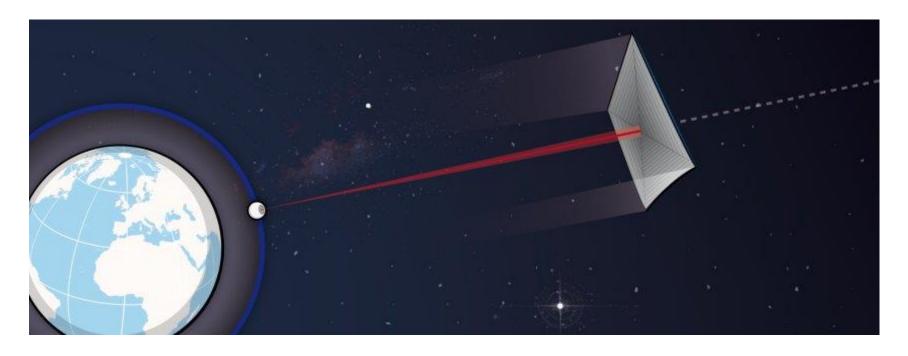
$$c = \lambda \cdot f$$
 $p = m \cdot c$

$$E = h \cdot f \qquad \qquad h \cdot f = m \cdot c^2 \qquad \qquad E = m \cdot c^2$$


$$m = \frac{h \cdot f}{c^2}$$

$$p = \frac{h \cdot f}{c}$$

Jeder Lichtquant der Frequenz f besitzt eine bestimmte Masse und Impuls.


Lichtquanten bewegen sich immer mit Lichtgeschwindigkeit.

Lichtquanten besitzen keine Ruhemasse.

► Ein Lichtquant ist eine diskrete Energieportion.

Prinzip des Photonenantriebs:

Ein leistungsstarker Laserstrahl trifft auf das Segel eines Fluggeräts.

Bei der Reflexion der Photonen wird ein Impuls auf das Segel übertragen
→ das Raumschiff wird immer schneller.

Mit dieser Technologie soll ein Viertel der Lichtgeschwindigkeit erreichbar sein.