3BE 1BE

3BE

2BE

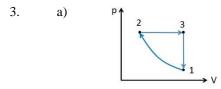
3BE

Leistungskontrolle

- Thermodynamik -

- 1. In einem geschlossenen Gefäß befindet sich ein ideales Gas. Von außen wird die Wärme O zugeführt.
 - a) Nennen Sie die Merkmale des Modells "ideales Gas".
 - b) Wenden Sie die Gleichung des 1.HS der Thermodynamik auf diesen Prozess für den Fall V=konstant an.
 - c) Vergleichen Sie den Temperaturanstieg mit Aufgabe b), wenn der Prozess isobar abläuft. Begründen Sie.
- 2. Für einen Tauchvorgang wird eine Sauerstoffflasche (R_S=260J/Kg·K) mit einem Volumen von 2,01 bei einer Temperatur von 25°C so gefüllt, dass der Innendruck der Flasche 200bar beträgt. Bis zum Tauchvorgang steht die Flasche in der Sonne und erwärmt sich dabei auf 55°C.

- a) Berechnen Sie die Masse des Sauerstoffs in der Flasche.
- b) Welche Wärmemenge Q wurde vom Gas bei der Erwärmung in der Sonne aufgenommen? 2BE
- Beim Tauchen im Wasser von 15°C führt ein Taucher etwa 20 Atemzüge je Minute mit einem Volumen von je 1,2dm³ pro Atemzug aus der Flasche aus. Die Atmung erfolge unter Normaldruck.
- c) Berechnen Sie, wie lange der Taucher unter diesen Bedingungen maximal unter Wasser sein kann. 4BE
- 3. In einem Zylinder mit V_1 =100cm³ befindet sich Luft unter Normaldruck p_1 bei δ_1 =25°C. Das Gas ist mit einem beweglichen Kolben verschlossen und durchläuft den folgenden Kreisprozess:
 - $1 \rightarrow 2$: isotherme Kompression um $\frac{3}{4}$ des Ausgangsvolumens
 - $2 \rightarrow 3$: isobare Expansion
 - $3 \rightarrow 1$: isochore Abkühlung
 - a) Veranschaulichen Sie diesen Kreisprozess in einem p-V-Diagramm (ohne Werte).
 - 3BE b) Stellen Sie tabellarisch die Werte der Zustandsgrößen p; V, & in den Zuständen 1, 2 und 3 zusammen. 3BE


 - c) Bestimmen Sie die Nutzarbeit bei einem Durchlauf des Kreisprozesses.

Lösungen:

- 1. - Gasteilchen besitzen kein Eigenvolumen a)
 - zwischen den Teilchen wirken keine Kräfte (keine Anziehung/Abstoßung)
 - Stöße zwischen den Teilchen und der Gefäßwand sind vollelastisch
 - b) $Q = \Delta U$ (zugeführte Wärme führt ausschließlich zur Erhöhung der inneren Energie)
 - für den Druckausgleich muss sich das Volumen vergrößern es wird zusätzlich Volumenarbeit verrichtet c)
 - die zugeführte Wärme führt zur Erhöhung der inneren Energie und zum Verrichten von Arbeit
 - die Zunahme der inneren Energie ist geringer und der Temperaturanstieg kleiner
- $m = \frac{p \cdot V}{R_S \cdot T} = 0,516 kg$ 2. a)
 - $Q = m \cdot c_v \cdot \Delta T = 10,06kJ$ b)
 - Zustand 1: gefüllte Gasflasche bei 25°C Zustand 2: entnommenes Gas bei p₀ und 15°C c) $V_2 = V_1 \cdot \frac{T_2}{T_1} \cdot \frac{p_1}{p_2} = 381,6 Liter$

b)

verbrauchter Sauerstoff pro Minute: $V = 20 \cdot 1, 2l = 24Liter$ $\frac{24l}{1min} = \frac{381,6l}{x}$ $x \approx 16min$

	p in 10 ⁵ Pa	V in cm ³	T in K (°C)
1	1,013	100	298,15 (25)
2	4,05	25	298,15 (25)
3	4,05	100	1192,6 (919,5)

c)
$$W_{1.2} = -p_1 \cdot V_1 \cdot \ln\left(\frac{V_2}{V_1}\right) = +14,04J$$
 $W_{2.3} = -p \cdot \Delta V = -30,4J$ $W_{Nutz} = -16,4J$