mathematische Herleitung der Schwingungsgleichung einer harmonischen Schwingung:

$$F = -D \cdot \chi(t)$$

(2) Newton'sches Grundgesetz:
$$F = m \cdot a(t) = m \cdot \frac{d^2x(t)}{dt^2}$$

zweite Ableitung des Ortes nach der Zeit

Gleichsetzen:
$$-D$$

$$-D \cdot x(t) = m \cdot \frac{d^2x(t)}{dt^2}$$

$$0 = D \cdot x(t) + m \cdot \frac{d^2x(t)}{dt^2}$$

Differentialgleichung 2. Ordnung

$$\frac{d^2x(t)}{dt^2} = -\frac{D}{m} \cdot x(t)$$

$$x''(t) = -\frac{D}{m} \cdot x(t)$$

Eine Funktion x(t) ist mit ihrer 2. Ableitung x"(t) über eine Konstante verknüpft.

Die Lösung der Differentialgleichung ergibt eine Sinusfunktion ...

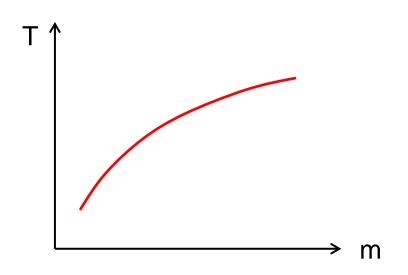
▶ ... eine harmonische Schwingung kann durch eine Sinusfunktion beschrieben werden ...

Periodendauer und Frequenz harmonischer Schwinger

Federschwinger:

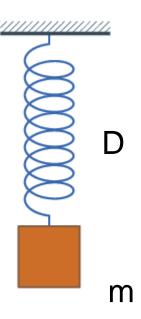
→ experimentelle Untersuchung (SE)

Je größer die Masse m des Schwingers, desto größer die Periodendauer T.



$$T \sim \sqrt{m}$$

weitere Abhängigkeiten?



D ... Federkonstante (Richtgröße)

m ... Masse des Schwingers

$$T = ?$$

mathematische Herleitung:

(1) lineares Kraftgesetz: (2) Newtonsches Grundgesetz:

$$F = -D \cdot x(t) \qquad F = m \cdot a(t)$$

$$-D \cdot (x)t = m \cdot a(t) \qquad v_{max} = \omega \cdot x_{max}$$

$$-D \cdot (x)t = m \cdot x''(t) \qquad a_{max} = v_{max} \cdot \omega^{2}$$

$$-D \cdot x_{max} \cdot \sin(\omega \cdot t) = m \cdot [-a_{max} \cdot \sin(\omega \cdot t)]$$

$$-D \cdot x_{max} \cdot \sin(\omega \cdot t) = m \cdot [-x_{max} \cdot \omega^{2}] \cdot \sin(\omega \cdot t)$$

$$D = m \cdot \omega^{2}$$

$$D = m \cdot (\frac{2\pi}{T})^{2} \qquad T = 2\pi \cdot \sqrt{\frac{m}{D}}$$

Die Periodendauer T eines schwingenden Systems wird durch dessen Masse **m** und die Richtgröße **D** bestimmt.

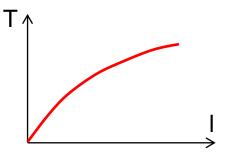
$$I \sim \sqrt{m}$$
$$T \sim \frac{1}{\sqrt{D}}$$

Für einen vertikalen Federschwingen ergibt sich die Masse m aus der Masse m_F der Feder und des schwingenden Körpers m_K .

Fadenpendel:

→ experimentelle Untersuchung (Hausexperiment)

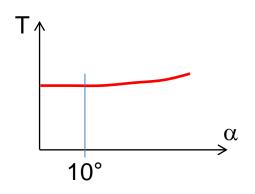
Die Periodendauer T ist von der Masse m (Massenpunkt/reibungsfrei) unabhängig.



Die Periodendauer T nimmt mit der Pendellänge I zu.

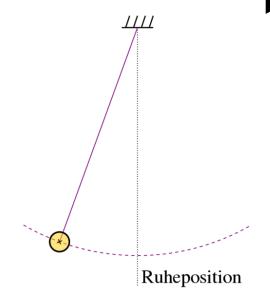
Mit zunehmender Pendellänge steigt die Periodendauer weniger an.

(3) $T=f(\alpha)$



Die Periodendauer T ist vom Auslenkwinkel α für kleine Auslenkungen (harmonische Schwingung) unabhängig.

Periodendauer am Fadenpendel:



▶ Die Periodendauer ist von der Masse unabhängig ...

$$F_R = -m \cdot g \cdot \sin(\frac{x}{l})$$

kleine Winkel (<10°): $\sin\left(\frac{x}{l}\right) = \frac{x}{l}$

$$\sin\left(\frac{x}{l}\right) = \frac{x}{l}$$

$$F_R = -m \cdot g \cdot \frac{x}{l}$$

$$\frac{m \cdot g}{l} = D$$

$$T = 2\pi \sqrt{\frac{m}{D}} = 2\pi \sqrt{\frac{m \cdot l}{m \cdot g}}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Bedingungen:

- kleine Auslenkwinkel
- punktförmiger Massekörper
- masseloser Faden

Bedeutung:

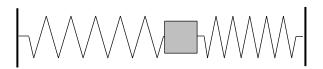
→ mathematisches Pendel

→ Bestimmung der Fallbeschleunigung g

Schwingende Federsysteme:

(Masse m, Federkonstante D_F)

vertikaler Federschwinger



$$D_r = D_{F1} + D_{F2}$$

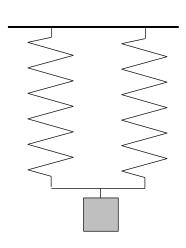
Für $D_{F1} = D_{F2}$ ergibt sich:

$$D_r = 2D_F$$

$$\frac{1}{D_r} = \frac{1}{D_{F1}} + \frac{1}{D_{F2}}$$

$$\to D_r = \frac{D_F}{2}$$

größere Periodendauer



"härtere" Feder

$$D_r = D_{F1} + D_{F2}$$

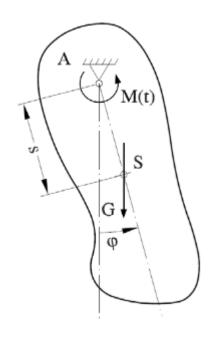
$$D_r = 2D_F$$

kleinere Periodendauer

* physisches (physikalisches) Pendel:

Die Schwingung eines <u>ausgedehnten Körpers</u> um einen festen Punkt entspricht einer <u>realeren Bewegung</u> und wird als **physisches Pendel** bezeichnet.

Die Periodendauer (Frequenz) wird durch die Form bzw. Massenverteilung des schwingenden Körpers bestimmt.



Es kann nicht die Gleichung des mathematischen Pendels angewendet werden!

Es gilt:
$$T = 2\pi \cdot \sqrt{\frac{I}{mgs}}$$
 $\frac{I}{m \cdot s} = l_R$ $T = 2\pi \cdot \sqrt{\frac{l_R}{g}}$

I ... Trägheitsmoment

I_R ... reduzierte Pendellänge

s ... Abstand Drehpunkt - Schwerpunkt