Auswertung des Schülerexperimentes

Beobachtungen:

- Auf dem Schirm entstehet ein Interferenzmuster (Minima/Maxima)
- Das Maximum 0.Ordnung ist weiß
- Die Maxima höherer Ordnung ergeben ein Farbspektrum
- Die Maxima für blau liegen weiter innen als für rot
- Die Spektren werden mit zunehmender Ordnung breiter (und schwächer)

Erklärung:

- Für k>0 entsteht zwischen den interferierenden Lichtwellen ein Gangunterschied δ und erzeugen für δ =k· λ ein Maximum
- Die Maxima verschiedener Farben entstehen an verschieden Stellen
- Für k=0 tritt für alle Farben kein Gangunterschied auf und interferieren an der gleichen Stelle

Schlussfolgerungen:

- Da die Maxima an verschiedenen Stellen entstehen, besitzt Licht unterschiedlicher Farbe verschiedene Wellenlängen.
- → Interferenzwinkel:

$$\alpha_{\text{rot}} > \alpha_{\text{blau}}$$

$$\sin(\alpha) = \frac{k \cdot \lambda}{g}$$

$$\lambda_{\text{rot}} > \lambda_{\text{blau}}$$

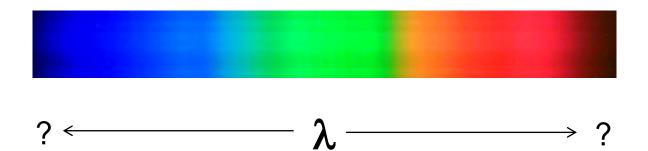
Ergebnisse:

Rotfilter:

 $\lambda_{rot} \approx 620 nm$

Grünfilter:

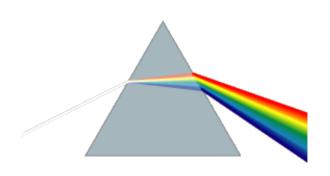
 $\lambda_{\text{grün}} \approx 550 nm$


Blaufilter:

 $\lambda_{blau} \approx 450 nm$

Fehlerquellen:

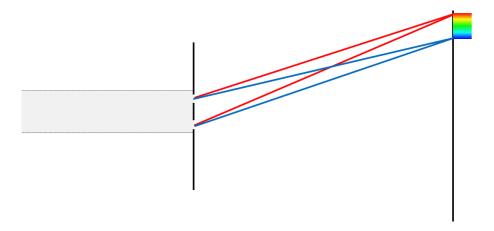
- Breite des Spaltes
- Breite der Farblinien
- Messgenauigkeit del Lineals +/- 1mm


Das Spektrum des Lichtes

Spektrale Zerlegung des Lichtes:

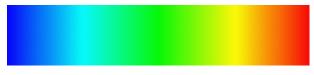
(1) ... mit Prisma

(2) ... mit Doppelspalt / Gitter



... durch Brechung und Dispersion

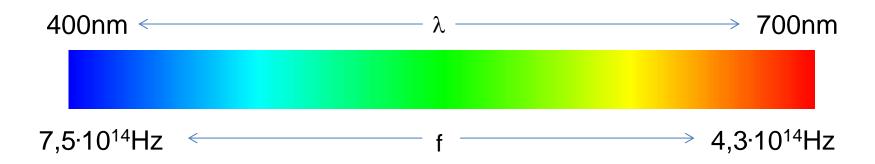
Prismen- bzw. Dispersionsspektrum



"ungleichmäßige" Farbverteilung

... durch Beugung und Interferenz

Gitter- bzw. Beugungsspektrum

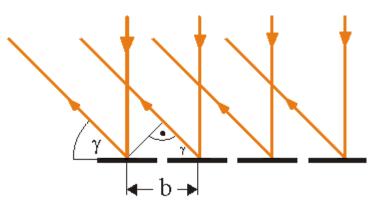

"gleichmäßige" Farbverteilung

Jeder (spektralen) Lichtfarbe kann genau eine Wellenlänge zugeordnet werden.

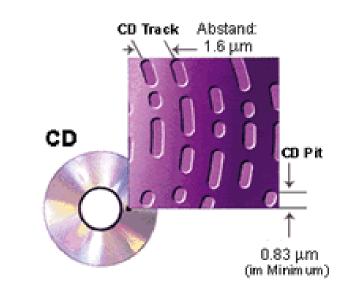
Licht mit genau einer bestimmten Wellenlänge nennt man monochromatisch.

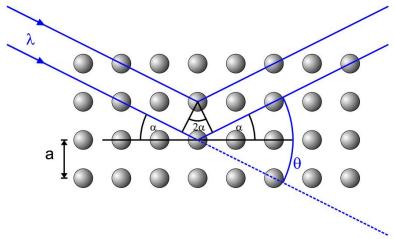
► Farbfilter erzeugen kein monochromatisches Licht. Sie filtern einen ganzen Wellenlängenbereich $\Delta\lambda$ heraus.

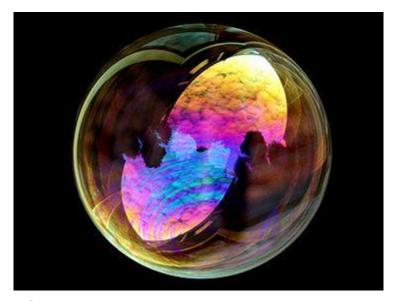
sichtbares Licht:



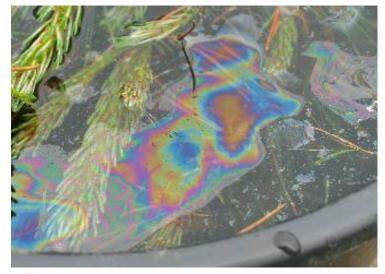
Nach der <u>Grundgleichung der Wellenlehre</u> kann jeder Wellenlänge auch eine **Frequenz** zugeordnet werden.

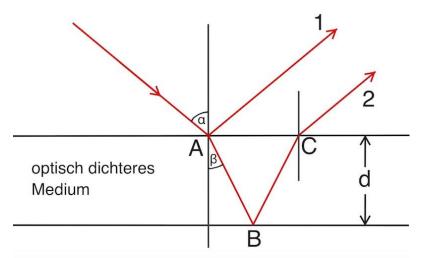

$$c = \lambda \cdot f$$


Interferenz durch Reflexion:



Bestimmung des Spurabstandes b einer CD/DVD

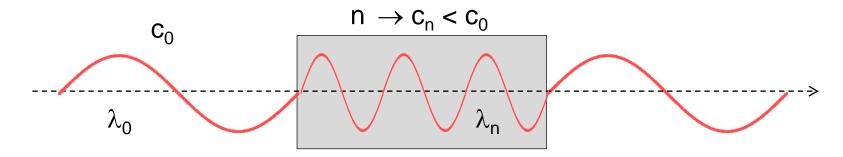



Bestimmung des Gitterabstandes a in Kristallen

Seifenblasen

Ölfilm auf Wasseroberfläche

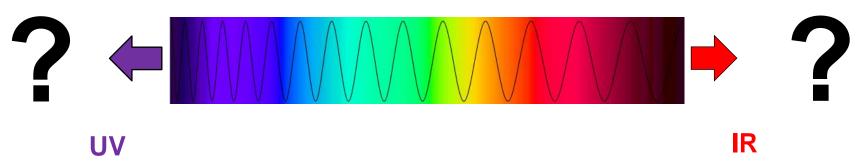
Interferenz durch Reflexion an dünnen Schichten


Entspiegelung von Brillengläsern

Licht in optischen Medien:

In optisch dichteren Medien (n>1) breitet sich das Licht mit geringeren Geschwindigkeiten aus.

Die Ausbreitungsgeschwindigkeit ist auch von der Farbe abhängig.


Die Wellenlänge λ_n des Lichtes einer bestimmten Farbe ist von der Brechzahl n des optischen Mediums abhängig.

Es gilt:
$$n = \frac{c_0}{c_n} = \frac{\lambda_0 \cdot f}{\lambda_n \cdot f} \longrightarrow \boxed{\lambda_0 = n \cdot \lambda_1}$$

Je größer die Brechzahl n des optischen Mediums, desto kleiner die Wellenlänge des Lichtes.

Die Farbe des Lichtes wird durch seine Frequenz eindeutig bestimmt.

Der für das menschliche Auge sichtbare Bereich des Lichtes reicht von 400 – 700nm

Lichtwellen mit λ < 400nm werden als ultraviolettes Licht bezeichnet.

Licht mit $\lambda > 800$ nm heißt ultrarotes (infrarotes) Licht.

Viele Lichtquellen erzeugen Lichtwellenwellen <u>auch</u> im IR und im UV-Bereich.

▶ Beide Wellenbereiche sind für das bloße Auge nicht sichtbar.

Ultraviolettes und infrarotes Licht besitzen z.T. sehr unterschiedliche Eigenschaften.

Infrarotes Licht:

Infrarotes Lichte entspricht der Wärmestrahlung bis ca. 15µm.

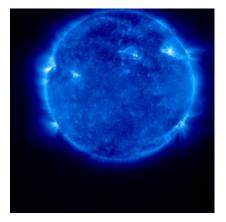
Der menschliche Körper sendet IR-Strahlung im Bereich von 7000 – 9000nm aus (IR-C).

IR-Licht kann mit speziellen Detektoren (Halbleiter) nachgewiesen

werden.

IR-Fernbedienung

IR-Bewegungsmelder


Wärmebild

Ultraviolettes Licht:

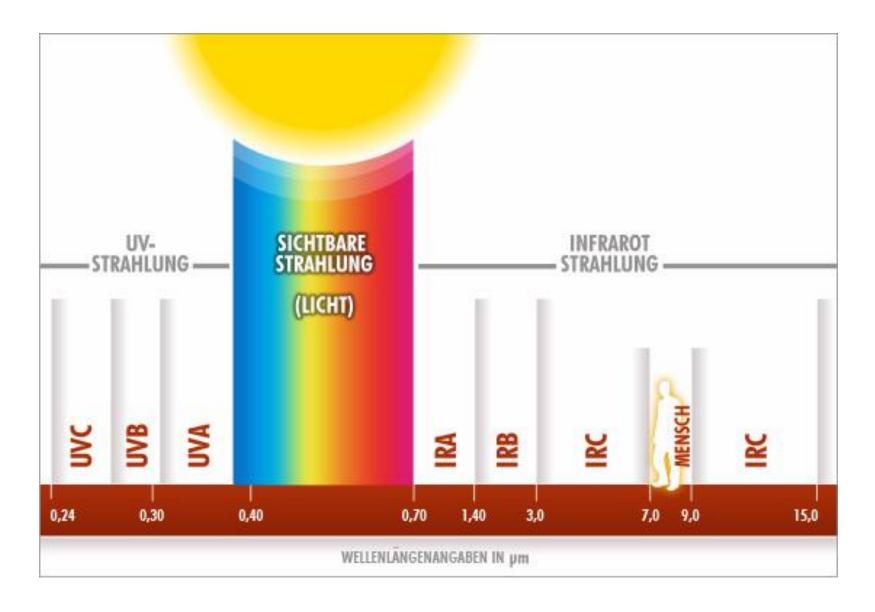
UV-Licht ist eine sehr energiereiche Strahlung bis zu 1nm.

Für manche Tiere (Insekten, Vögel, Fische, Reptilien) ist UV-Licht "sichtbar".

UV-Licht ist für die Bräunung (Verbrennung) der Haut verantwortlich.

UV-Spektrum der Sonne

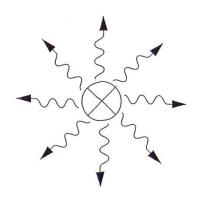
Sonnenbank



UV-Beleuchtung (Schwarzlicht)

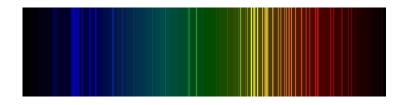
Ihr Nachweis ist z.B. durch Wechselwirkung mit anderen Stoffen möglich (Fluoreszenz).

Wellenlängenbereiche des Sonnenlichtes auf der Erdoberfläche:


Zusammenfassung:

Licht ist eine Welle hoher Frequenz, die sich ohne stofflichen Träger wie Hertzsche Wellen mit Lichtgeschwindigkeit ausbreitet.

Das sichtbare Licht ist ein (sehr) kleiner Bereich des Spektrums elektromagnetischer Wellen.


Offene Fragen:

Wie entsteht eigentlich Licht?

Ist Licht eine Längs- oder Querwelle?

Warum erzeugen manche Lichtquellen ein Linienspektrum, andere ein kontinuierliches Spektrum?

Wodurch wird die Energie des Lichtes bestimmt? Wie groß ist sie?